SVD Feature Selection for Probabilistic Taxonomy Learning

نویسندگان

  • Francesca Fallucchi
  • Fabio Massimo Zanzotto
چکیده

In this paper, we propose a novel way to include unsupervised feature selection methods in probabilistic taxonomy learning models. We leverage on the computation of logistic regression to exploit unsupervised feature selection of singular value decomposition (SVD). Experiments show that this way of using SVD for feature selection positively affects performances.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Singular Value Decomposition for Feature Selection in Taxonomy Learning

In this paper, we propose a novel way to include unsupervised feature selection methods in probabilistic taxonomy learning models. We leverage on the computation of logistic regression to exploit unsupervised feature selection of singular value decomposition (SVD). Experiments show that this way of using SVD for feature selection positively affects perfor-

متن کامل

Novel Radial Basis Function Neural Networks based on Probabilistic Evolutionary and Gaussian Mixture Model for Satellites Optimum Selection

In this study, two novel learning algorithms have been applied on Radial Basis Function Neural Network (RBFNN) to approximate the functions with high non-linear order. The Probabilistic Evolutionary (PE) and Gaussian Mixture Model (GMM) techniques are proposed to significantly minimize the error functions. The main idea is concerning the various strategies to optimize the procedure of Gradient ...

متن کامل

Combining feature selection and feature reduction for protein classification

We use the n-grams descriptors for a protein classification task. As they are automatically generated, we obtain many irrelevant and/or redundant descriptors. In this paper, we evaluate various strategies of feature selection and feature reduction. First, we evaluate separately the efficiency of a filtering feature selection algorithm and a feature reduction on the basis of a singular value dec...

متن کامل

Feature Extraction and Efficiency Comparison Using Dimension Reduction Methods in Sentiment Analysis Context

Nowadays, users can share their ideas and opinions with widespread access to the Internet and especially social networks. On the other hand, the analysis of people's feelings and ideas can play a significant role in the decision making of organizations and producers. Hence, sentiment analysis or opinion mining is an important field in natural language processing. One of the most common ways to ...

متن کامل

Sequential and Mixed Genetic Algorithm and Learning Automata (SGALA, MGALA) for Feature Selection in QSAR

Feature selection is of great importance in Quantitative Structure-Activity Relationship (QSAR) analysis. This problem has been solved using some meta-heuristic algorithms such as: GA, PSO, ACO, SA and so on. In this work two novel hybrid meta-heuristic algorithms i.e. Sequential GA and LA (SGALA) and Mixed GA and LA (MGALA), which are based on Genetic algorithm and learning automata for QSAR f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009